AQA Maths M2

Topic Questions from Papers

Kinematics

1 A particle moves in a straight line and at time t has velocity v, where

$$
v=2 t-12 \mathrm{e}^{-t}, \quad t \geqslant 0
$$

(a) (i) Find an expression for the acceleration of the particle at time t.
(ii) State the range of values of the acceleration of the particle.
(b) When $t=0$, the particle is at the origin.

Find an expression for the displacement of the particle from the origin at time t.

2 A particle moves in a horizontal plane, in which the unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively. At time t seconds, its position vector, \mathbf{r} metres, is given by

$$
\mathbf{r}=\left(2 t^{3}-t^{2}+6\right) \mathbf{i}+\left(8-4 t^{3}+t\right) \mathbf{j}
$$

(a) Find an expression for the velocity of the particle at time t.
(b) (i) Find the velocity of the particle when $t=\frac{1}{3}$.
(ii) State the direction in which the particle is travelling at this time.
(c) Find the acceleration of the particle when $t=4$.
(d) The mass of the particle is 6 kg . Find the magnitude of the resultant force on the particle when $t=4$.

3 Tom is on a fairground ride.
Tom's position vector, \mathbf{r} metres, at time t seconds is given by

$$
\mathbf{r}=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+(10-0.4 t) \mathbf{k}
$$

The perpendicular unit vectors \mathbf{i} and \mathbf{j} are in the horizontal plane and the unit vector \mathbf{k} is directed vertically upwards.
(a) (i) Find Tom's position vector when $t=0$.
(ii) Find Tom's position vector when $t=2 \pi$.
(iii) Write down the first two values of t for which Tom is directly below his starting point.
(b) Find an expression for Tom's velocity at time t.
(c) Tom has mass 25 kg .

Show that the resultant force acting on Tom during the motion has constant magnitude. State the magnitude of the resultant force.

4 A particle has mass 800 kg . A single force of ($2400 \mathbf{i}-4800 t \mathbf{j}$) newtons acts on the particle at time t seconds. No other forces act on the particle.
(a) Find the acceleration of the particle at time t.
(b) At time $t=0$, the velocity of the particle is $(6 \mathbf{i}+30 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$. The velocity of the particle at time t is $\mathbf{v m ~ s}^{-1}$.

Show that

$$
\mathbf{v}=(6+3 t) \mathbf{i}+\left(30-3 t^{2}\right) \mathbf{j}
$$

(c) Initially, the particle is at the point with position vector $(2 \mathbf{i}+5 \mathbf{j}) \mathrm{m}$.

Find the position vector, \mathbf{r} metres, of the particle at time t.
(Q3, June 2007)

5 A particle moves in a straight line and at time t it has velocity v, where

$$
v=3 t^{2}-2 \sin 3 t+6
$$

(a) (i) Find an expression for the acceleration of the particle at time t.
(ii) When $t=\frac{\pi}{3}$, show that the acceleration of the particle is $2 \pi+6$.
(b) When $t=0$, the particle is at the origin.

Find an expression for the displacement of the particle from the origin at time t.

6 A particle moves in a horizontal plane under the action of a single force, \mathbf{F} newtons. The unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively. At time t seconds, the position vector, \mathbf{r} metres, of the particle is given by

$$
\mathbf{r}=\left(t^{3}-3 t^{2}+4\right) \mathbf{i}+\left(4 t+t^{2}\right) \mathbf{j}
$$

(a) Find an expression for the velocity of the particle at time t.
(b) The mass of the particle is 3 kg .
(i) Find an expression for \mathbf{F} at time t.
(ii) Find the magnitude of \mathbf{F} when $t=3$.
(c) Find the value of t when \mathbf{F} acts due north.

7 A particle moves in a straight line and at time t seconds has velocity $v \mathrm{~m} \mathrm{~s}^{-1}$, where

$$
v=6 t^{2}+4 t-7, \quad t \geqslant 0
$$

(a) Find an expression for the acceleration of the particle at time t.
(b) The mass of the particle is 3 kg .

Find the resultant force on the particle when $t=4$.
(c) When $t=0$, the displacement of the particle from the origin is 5 metres.

Find an expression for the displacement of the particle from the origin at time t.
(Q1, June 2008)

8 A particle moves along a straight line. At time t, it has velocity v, where

$$
v=4 t^{3}-8 \sin 2 t+5
$$

When $t=0$, the particle is at the origin.
Find an expression for the displacement of the particle from the origin at time t. (4 marks)
(Q1, Jan 2009)

9 A particle moves on a horizontal plane, in which the unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively.

At time t seconds, the position vector of the particle is \mathbf{r} metres, where

$$
\mathbf{r}=\left(2 \mathrm{e}^{\frac{1}{2} t}-8 t+5\right) \mathbf{i}+\left(t^{2}-6 t\right) \mathbf{j}
$$

(a) Find an expression for the velocity of the particle at time t.
(b) (i) Find the speed of the particle when $t=3$.
(ii) State the direction in which the particle is travelling when $t=3$.
(c) Find the acceleration of the particle when $t=3$.
(d) The mass of the particle is 7 kg .

Find the magnitude of the resultant force on the particle when $t=3$.

10 A particle moves under the action of a force, \mathbf{F} newtons. At time t seconds, the velocity, $\mathbf{v} \mathrm{ms}^{-1}$, of the particle is given by

$$
\mathbf{v}=\left(t^{3}-15 t-5\right) \mathbf{i}+\left(6 t-t^{2}\right) \mathbf{j}
$$

(a) Find an expression for the acceleration of the particle at time t.
(b) The mass of the particle is 4 kg .
(i) Show that, at time t,

$$
\mathbf{F}=\left(12 t^{2}-60\right) \mathbf{i}+(24-8 t) \mathbf{j}
$$

(ii) Find the magnitude of \mathbf{F} when $t=2$.

11 A particle moves so that at time t seconds its velocity $\mathbf{v ~ m ~ s}^{-1}$ is given by

$$
\mathbf{v}=\left(4 t^{3}-12 t+3\right) \mathbf{i}+5 \mathbf{j}+8 t \mathbf{k}
$$

(a) When $t=0$, the position vector of the particle is $(-5 \mathbf{i}+6 \mathbf{k})$ metres.

Find the position vector of the particle at time t.
(b) Find the acceleration of the particle at time t.
(c) Find the magnitude of the acceleration of the particle at time t. Do not simplify your answer.
(d) Hence find the time at which the magnitude of the acceleration is a minimum.
(e) The particle is moving under the action of a single variable force \mathbf{F} newtons. The mass of the particle is 7 kg .

Find the minimum magnitude of \mathbf{F}.

12 A particle moves along a straight line through the origin. At time t, the displacement, s, of the particle from the origin is given by

$$
s=5 t^{2}+3 \cos 4 t
$$

Find the velocity of the particle at time t.

13 A particle has mass 200 kg and moves on a smooth horizontal plane. A single horizontal force, $\left(400 \cos \left(\frac{\pi}{2} t\right) \mathbf{i}+600 t^{2} \mathbf{j}\right)$ newtons, acts on the particle at time t seconds.

The unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively.
(a) Find the acceleration of the particle at time t.
(b) When $t=4$, the velocity of the particle is $(-3 \mathbf{i}+56 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$.

Find the velocity of the particle at time t.
(c) Find t when the particle is moving due west.
(d) Find the speed of the particle when it is moving due west.
(Q4, June 2010)

14 The velocity of a particle at time t seconds is $\mathbf{v ~ m ~ s}^{-1}$, where

$$
\mathbf{v}=\left(4+3 t^{2}\right) \mathbf{i}+(12-8 t) \mathbf{j}
$$

(a) When $t=0$, the particle is at the point with position vector $(5 \mathbf{i}-7 \mathbf{j}) \mathrm{m}$.

Find the position vector, \mathbf{r} metres, of the particle at time t.
(b) Find the acceleration of the particle at time t.
(c) The particle has mass 2 kg .

Find the magnitude of the force acting on the particle when $t=1$.

15 A particle moves in a horizontal plane under the action of a single force, \mathbf{F} newtons. The unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively. At time t seconds, the velocity of the particle, $\mathrm{vm} \mathrm{s}^{-1}$, is given by

$$
\mathbf{v}=4 \mathrm{e}^{-2 t} \mathbf{i}+\left(6 t-3 t^{2}\right) \mathbf{j}
$$

(a) Find an expression for the acceleration of the particle at time t.
(b) The mass of the particle is 5 kg .
(i) Find an expression for the force \mathbf{F} acting on the particle at time t.
(ii) Find the magnitude of \mathbf{F} when $t=0$.
(c) Find the value of t when \mathbf{F} acts due west.
(d) When $t=0$, the particle is at the point with position vector $(6 \mathbf{i}+5 \mathbf{j}) \mathrm{m}$.

Find the position vector, \mathbf{r} metres, of the particle at time t.

16 A particle, of mass 50 kg , moves on a smooth horizontal plane. A single horizontal force

$$
\left[\left(300 t-60 t^{2}\right) \mathbf{i}+100 \mathrm{e}^{-2 t} \mathbf{j}\right] \text { newtons }
$$

acts on the particle at time t seconds.
The vectors \mathbf{i} and \mathbf{j} are perpendicular unit vectors.
(a) Find the acceleration of the particle at time t.
(b) When $t=0$, the velocity of the particle is $(7 \mathbf{i}-4 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$.

Find the velocity of the particle at time t.
(c) Calculate the speed of the particle when $t=1$.

A particle moves in a straight line. At time t seconds, it has velocity $v \mathrm{~m} \mathrm{~s}^{-1}$, where

$$
v=6 t^{2}-2 \mathrm{e}^{-4 t}+8
$$

and $t \geqslant 0$.
(a) (i) Find an expression for the acceleration of the particle at time t.
(ii) Find the acceleration of the particle when $t=0.5$.
(b) The particle has mass 4 kg .

Find the magnitude of the force acting on the particle when $t=0.5$. (l mark)
(c) When $t=0$, the particle is at the origin.

Find an expression for the displacement of the particle from the origin at time t.
(4 marks)
(Q2, June 2012)

18 A particle moves on a horizontal plane, in which the unit vectors \mathbf{i} and \mathbf{j} are perpendicular.

At time t, the particle's position vector, \mathbf{r}, is given by

$$
\mathbf{r}=4 \cos 3 t \mathbf{i}-4 \sin 3 t \mathbf{j}
$$

(a) Prove that the particle is moving on a circle, which has its centre at the origin.
(b) Find an expression for the velocity of the particle at time t.
(c) Find an expression for the acceleration of the particle at time t.
(d) The acceleration of the particle can be written as

$$
\mathbf{a}=k \mathbf{r}
$$

where k is a constant.

Find the value of k.
(e) State the direction of the acceleration of the particle.

19 A particle moves in a horizontal plane. The vectors \mathbf{i} and \mathbf{j} are perpendicular unit vectors in the horizontal plane. At time t seconds, the velocity of the particle, $\mathbf{v} \mathrm{m} \mathrm{s}^{-1}$, is given by

$$
\mathbf{v}=12 \cos \left(\frac{\pi}{3} t\right) \mathbf{i}-9 t^{2} \mathbf{j}
$$

(a) Find an expression for the acceleration of the particle at time t.
(b) The particle, which has mass 4 kg , moves under the action of a single force, F newtons.
(i) Find an expression for the force \mathbf{F} in terms of t.
(ii) Find the magnitude of \mathbf{F} when $t=3$.
(c) When $t=3$, the particle is at the point with position vector $(4 \mathbf{i}-2 \mathbf{j}) \mathrm{m}$. Find the position vector, \mathbf{r} metres, of the particle at time t.

20 A particle, of mass 3 kg , moves along a straight line. At time t seconds, the displacement, s metres, of the particle from the origin is given by

$$
s=8 t^{3}+15
$$

(a) Find the velocity of the particle at time t.
(b) Find the magnitude of the resultant force acting on the particle when $t=2$. (4 marks)
(Q1, June 2013)

21 A particle, of mass 10 kg , moves on a smooth horizontal plane. At time t seconds, the acceleration of the particle is given by

$$
\left\{\left(40 t+3 t^{2}\right) \mathbf{i}+20 \mathrm{e}^{-4 t} \mathbf{j}\right\} \mathrm{m} \mathrm{~s}^{-2}
$$

where the vectors \mathbf{i} and \mathbf{j} are perpendicular unit vectors.
(a) At time $t=1$, the velocity of the particle is $\left(6 \mathbf{i}-5 \mathrm{e}^{-4} \mathbf{j}\right) \mathrm{m} \mathrm{s}^{-1}$.

Find the velocity of the particle at time t.
(b) Calculate the initial speed of the particle.

